

Polynt Group Sustainability Strategy

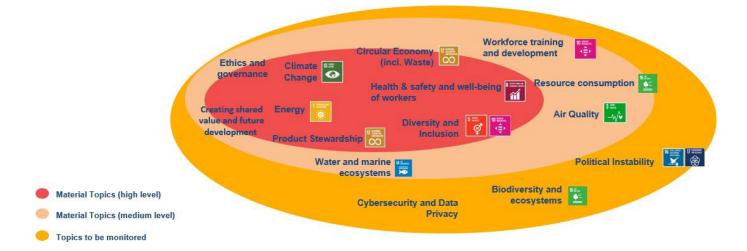
A New Approach Towards Composite Materials featured by Reduced CO₂ Emission

Lorenzo Grazia

EU Technical Service Manager UPR/GC

- Sustainability Strategy and Targets
- Polynt Integrated Business Model
 - GHG Reduction Strategies
- Life Cycle Assessment (LCA)
- Case Study
 - GHG reduced UPR-based product State of the art in Polynt
- Thermoset Composite Material end-of-life Recycle

Polynt Group


we are a specialty
polymers & intermediates
company
and innovation is our mission

Polynt Group – Sustainability Strategy

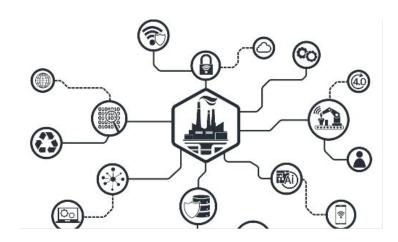
- Polynt Group presented its first Sustainability Report for the year 2022.
- This report has been prepared "with reference to" the **Global Reporting Initiative (GRI) Standard**, the international reference standards for non-financial reporting.
- A detailed analysis identified the priority topics to report on:

- 2024 Sustainability Report has been released in May 2025.
- Polynt will report on a full range of sustainability data and information relevant to the Group's business starting from the fiscal year 2025 in accordance with the new EU Corporate Sustainability Reporting Directive (CSRD).

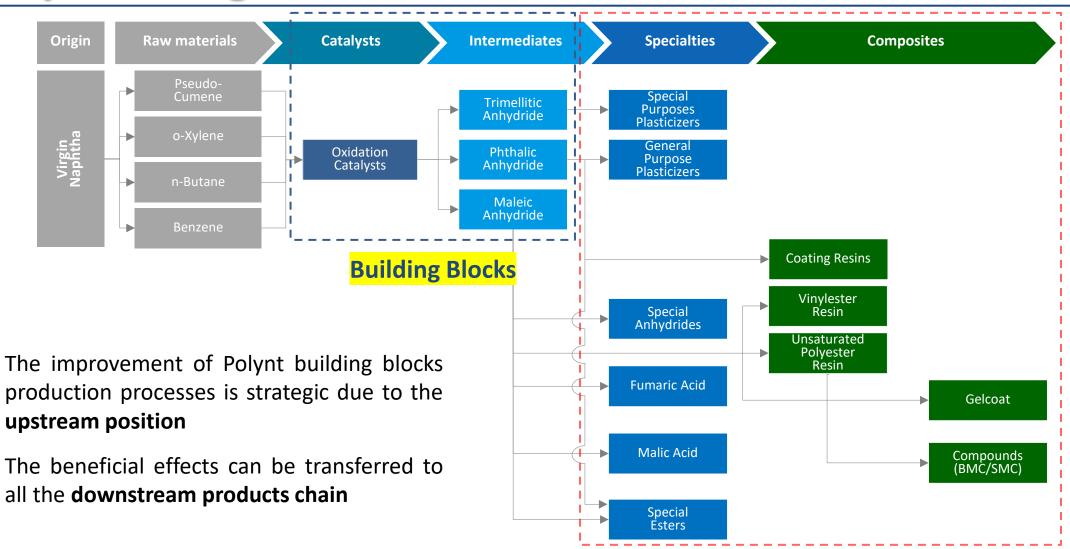
Polynt Group – Sustainability Targets

- GHG 20% reduction by 2030
- 0 injuries on a worldwide basis by 2030
- Full ESG evaluation of our supply chain on a worldwide basis by 2028
- 20% increase of female presence in the managerial roles by 2030
- 100% of IT users yearly security training by 2025
- 20% decrease of salary gap by 2027

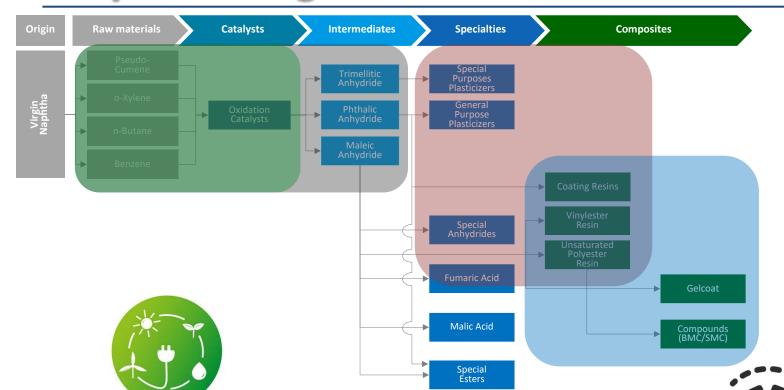
- Sustainability Strategy and Targets
- Polynt Integrated Business Model
 - GHG Reduction Strategies
- Life Cycle Assessment (LCA)
- Case Study
 - GHG reduced UPR-based product State of the art in Polynt
- Thermoset Composite Material end-of-life Recycle


Polynt Group – Environmental Targets

How to exploit the target of GHG 20% reduction


- New and/or <u>Improved Production Processes</u> (efficiency enhancement of <u>Integrated Business Model</u>)
- Renewable Input for Building Blocks
- Development of <u>Renewable-based Products</u> to progressively substitute fossil ones
- Design of <u>Recyclable Products</u> to reduce end-of-life impact
- Machine Learning and AI to predict new products formulation with minimized GHG emission

Polynt – Integrated Business Model



Downstream Products Chain

Polynt – Integrated Business Model

New Products

- Bio-based (integrated) resins
 - Renewable monomers
 - Mass-balance approach

Recycling

- Recyclable products development
 - Recycled raw materials

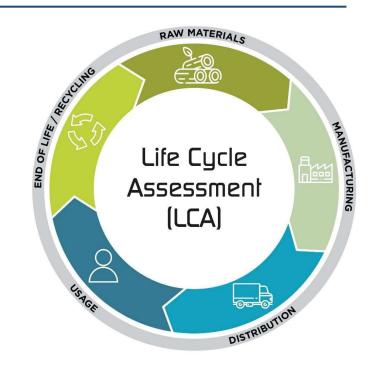
Renewable Input for our Building Blocks

Positive outcome (reduced CO₂ emissions) transferred to the whole downstream Products Chain

New Processes

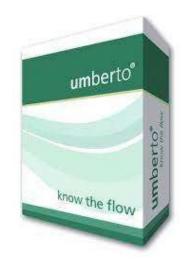
- Improved Reactor efficiency
 - Lower CO₂ emissions
- New technologies for Building Blocks

- Sustainability Strategy and Targets
- Polynt Integrated Business Model
 - GHG Reduction Strategies
- Life Cycle Assessment (LCA)
- Case Study
 - GHG reduced UPR-based product State of the art in Polynt
- Thermoset Composite Material end-of-life Recycle



Life Cycle Assessment (LCA):

- Methodology used to measure the environmental impact of a product (or a system) throughout its life cycle
- It measures the environmental impacts from **extraction** of raw materials, through **processing**, **manufacture**, **refurbishment** to eventual **end of life** and **disposal**
- Identify opportunities to improve the environmental performances of products in their life cycle


Polynt Group – EU Green Technical Department

- Dedicated and well-equipped group of specialized people working on LCA
- Compliant to ISO 14040 (LCA Principles and Frameworks) and ISO 14044 (LCA Requirements and Guidelines)

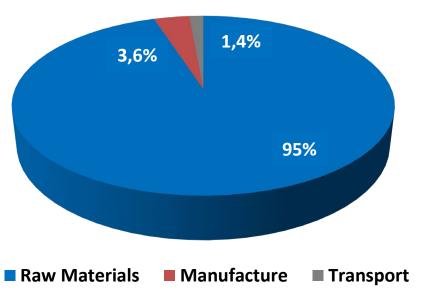
Modelling

- To calculate the LCA it's necessary to use a special software with a database
- Several professional software available in the market such as Umberto, SimaPro, GaBi, openLCA and database such as Ecoinvent
- POLYNT adopted Umberto and SimaPro with database Ecoinvent (openLCA available as well)

Databases

- Several databases available which may provide different results
- LCA declarations must specify type and version of software and database used for the calculation of the environmental indicators to avoid inconsistent comparison

The Evah Institute



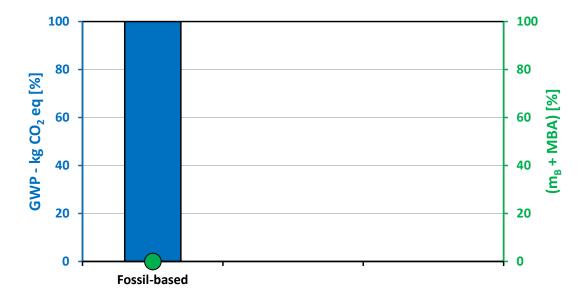
Results and Interpretation

- Raw materials have the greatest impact
- To reduce the environmental impact of UPR, formulation must be changed

Climate Change - Total
Contribution by Life Cycle Phase

Data calculated with Umberto 11 using Ecoinvent 3.10 database and EF3.1 method

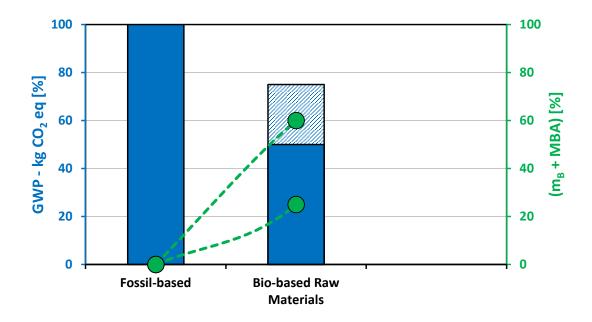
- Sustainability Strategy and Targets
- Polynt Integrated Business Model
 - GHG Reduction Strategies
- Life Cycle Assessment (LCA)
- Case Study
 - GHG reduced UPR-based product State of the art in Polynt
- Thermoset Composite Material end-of-life Recycle



Polynt Group – Case Study

Development of a GHG reduced UPR-based product

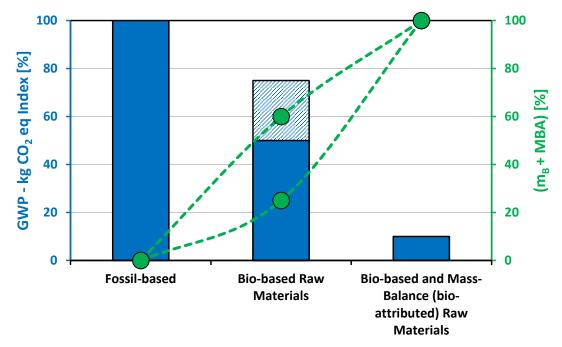
- A standard fossil-based UPR has been taken as an example
- 100% GWP kg CO₂ eq Index is related to a bio-based content equal to 0%


- The GWP value was calculated using the partial (cradle to gate) CFP ISO 14067 (IPCC 2021 AR6) environmental impact method, which includes biogenic carbon removals
- m_B is the bio-based content of the product, expressed as a percentage of the total mass of the dry matter of the product

Polynt Group – Case Study

Development of a GHG reduced UPR-based product

The Bio-Based Raw Material approach allow to introduce up to 60 wt% of renewable content in the final product resulting into 50% GWP reduction


- The GWP value was calculated using the partial (cradle to gate) CFP ISO 14067 (IPCC 2021 AR6) environmental impact method, which includes biogenic carbon removals
- m_B is the bio-based content of the product, expressed as a percentage of the total mass of the dry matter of the product

Polynt Group – Case Study

Development of a GHG reduced UPR-based product

The combination of the Bio-Based Raw Material approach together with the Mass-Balance (bio-attributed) Raw Materials allow to introduce up to 100 wt% of renewable content in the final product resulting into 90% GWP reduction

- The GWP value was calculated using the partial (cradle to gate) CFP ISO 14067 (IPCC 2021 AR6) environmental impact method, which includes biogenic carbon removals
- m_B is the bio-based content of the product, expressed as a percentage of the total mass of the dry matter of the product
- Mass balance approaches (MBAs) do not establish a direct physical connection between input resources and the final product content. As a result, even if bio-based raw materials are absent from the product, it may still be labelled as bio-based. Consequently, the International EPD System currently holds that MBAs are not aligned with the ISO 14040 series and related standards, and therefore should not be used in EPDs

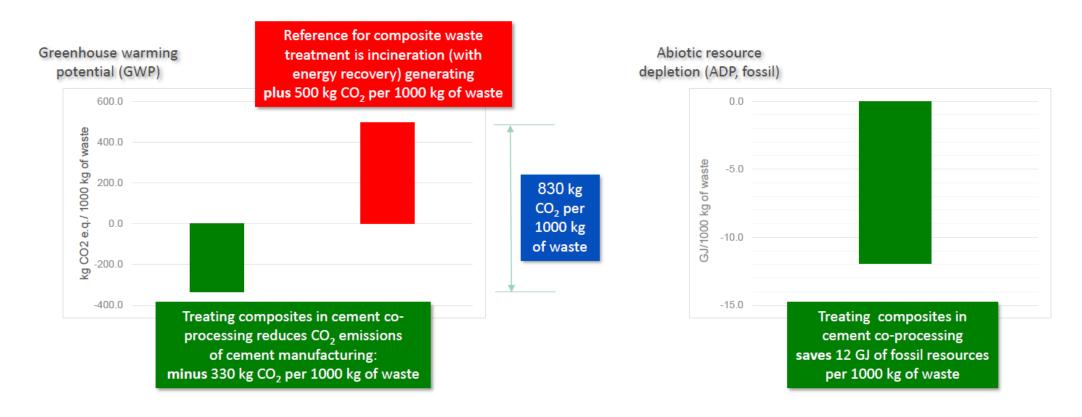
- Sustainability Strategy and Targets
- Polynt Integrated Business Model
 - GHG Reduction Strategies
- Life Cycle Assessment (LCA)
- Case Study
 - GHG reduced UPR-based product State of the art in Polynt
- Thermoset Composite Material end-of-life Recycle

Composites Material End-of-Life Recycle

Small Volumes but Responsible Approach

Composites Material End-of-Life Recycle

Recycling process	Recycling into cement	Mechanical recycling	Pyrolysis / Solvolysis / Pressolysis
Description	Re-use of raw materials (55- 75%) plus energy recovery	Mechanical grinding of composite parts into smaller particles	Separation of fibre and matrix under heat and pressure (no oxygen)
Benefit	Reduction of CO ₂ footprint of cement production	Use of regrind in new formulations, replacing primary materials	Reclaiming fibre, organic fraction for further processing
Energy needed for recycling operation	Low	Low to medium	Medium to high
Operating cost	Low	Low to medium	Medium to high
Technology readiness	Demonstrated at industrial scale. Preferred current solution for glass reinforced composites	Demonstrated at industrial scale. Mostly suitable for glass reinforced composites, mostly for low percentages	Demonstrated in small-scale equipment. Promising results for glass fibre, commercial for carbon fibre composites
Matrix type	Mainly thermosets	Thermosets and thermoplastics	Thermosets and thermoplastics
Recycling type/ Circularity	Open loop	Open loop/Closed loop	Open loop/Closed loop
Fit in roadmap	In use now	In use now/Optimise	Develop


Source: EuCIA, Cefic

Composites Recycling into Cement

Cement Co-Processing Makes Sense for Treating End-of-Life Composites

1 ton of composite waste treated by co-processing into cement saves ≈830 kg CO₂ Vs incineration *

^{*} Comparing composite waste vs. traditional cement raw materials and fuels (in this calculation: coal)

Conclusions

- Polynt Group Sustainability Strategy and Targets have been presented
- 20% GHG reduction can be achieved by means of different approach such as:
 - New/Improved Industrial Production Processes
 - Renewable Input / Renewable-based Products
 - Development of Recyclable Products
- Polynt is collaborating with several companies to use Composites pyrolysis oil back into crackers to produce renewable UPR building blocks
- Polynt's Green Technical Department manage the Life Cycle Assessment

Thanks for the kind attention

Any question?

